Chroma
This notebook covers how to get started with the Chroma
vector store.
Chroma is a AI-native open-source vector database focused on developer productivity and happiness. Chroma is licensed under Apache 2.0. View the full docs of
Chroma
at this page, and find the API reference for the LangChain integration at this page.
Setup
To access Chroma
vector stores you'll need to install the langchain-chroma
integration package.
pip install -qU "langchain-chroma>=0.1.2"
Credentials
You can use the Chroma
vector store without any credentials, simply installing the package above is enough!
If you want to get best in-class automated tracing of your model calls you can also set your LangSmith API key by uncommenting below:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
Initialization
Basic Initialization
Below is a basic initialization, including the use of a directory to save the data locally.
- OpenAI
- Azure
- AWS
- HuggingFace
- Ollama
- Cohere
- MistralAI
- Nomic
- NVIDIA
- Fake
pip install -qU langchain-openai
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
pip install -qU langchain-openai
import getpass
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import AzureOpenAIEmbeddings
embeddings = AzureOpenAIEmbeddings(
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-vertexai
from langchain_google_vertexai import VertexAIEmbeddings
embeddings = VertexAIEmbeddings(model="text-embedding-004")
pip install -qU langchain-aws
from langchain_aws import BedrockEmbeddings
embeddings = BedrockEmbeddings(model_id="amazon.titan-embed-text-v2:0")
pip install -qU langchain-huggingface
from langchain_huggingface import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
pip install -qU langchain-ollama
from langchain_ollama import OllamaEmbeddings
embeddings = OllamaEmbeddings(model="llama3")
pip install -qU langchain-cohere
import getpass
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import CohereEmbeddings
embeddings = CohereEmbeddings(model="embed-english-v3.0")
pip install -qU langchain-mistralai
import getpass
os.environ["MISTRALAI_API_KEY"] = getpass.getpass()
from langchain_mistralai import MistralAIEmbeddings
embeddings = MistralAIEmbeddings(model="mistral-embed")
pip install -qU langchain-nomic
import getpass
os.environ["NOMIC_API_KEY"] = getpass.getpass()
from langchain_nomic import NomicEmbeddings
embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
os.environ["NVIDIA_API_KEY"] = getpass.getpass()
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
embeddings = NVIDIAEmbeddings(model="NV-Embed-QA")
pip install -qU langchain-core
from langchain_core.embeddings import DeterministicFakeEmbedding
embeddings = DeterministicFakeEmbedding(size=4096)
from langchain_chroma import Chroma
vector_store = Chroma(
collection_name="example_collection",
embedding_function=embeddings,
persist_directory="./chroma_langchain_db", # Where to save data locally, remove if not necessary
)
Initialization from client
You can also initialize from a Chroma
client, which is particularly useful if you want easier access to the underlying database.
import chromadb
persistent_client = chromadb.PersistentClient()
collection = persistent_client.get_or_create_collection("collection_name")
collection.add(ids=["1", "2", "3"], documents=["a", "b", "c"])
vector_store_from_client = Chroma(
client=persistent_client,
collection_name="collection_name",
embedding_function=embeddings,
)
Manage vector store
Once you have created your vector store, we can interact with it by adding and deleting different items.
Add items to vector store
We can add items to our vector store by using the add_documents
function.
from uuid import uuid4
from langchain_core.documents import Document
document_1 = Document(
page_content="I had chocolate chip pancakes and scrambled eggs for breakfast this morning.",
metadata={"source": "tweet"},
id=1,
)
document_2 = Document(
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
metadata={"source": "news"},
id=2,
)
document_3 = Document(
page_content="Building an exciting new project with LangChain - come check it out!",
metadata={"source": "tweet"},
id=3,
)
document_4 = Document(
page_content="Robbers broke into the city bank and stole $1 million in cash.",
metadata={"source": "news"},
id=4,
)
document_5 = Document(
page_content="Wow! That was an amazing movie. I can't wait to see it again.",
metadata={"source": "tweet"},
id=5,
)
document_6 = Document(
page_content="Is the new iPhone worth the price? Read this review to find out.",
metadata={"source": "website"},
id=6,
)
document_7 = Document(
page_content="The top 10 soccer players in the world right now.",
metadata={"source": "website"},
id=7,
)
document_8 = Document(
page_content="LangGraph is the best framework for building stateful, agentic applications!",
metadata={"source": "tweet"},
id=8,
)
document_9 = Document(
page_content="The stock market is down 500 points today due to fears of a recession.",
metadata={"source": "news"},
id=9,
)
document_10 = Document(
page_content="I have a bad feeling I am going to get deleted :(",
metadata={"source": "tweet"},
id=10,
)
documents = [
document_1,
document_2,
document_3,
document_4,
document_5,
document_6,
document_7,
document_8,
document_9,
document_10,
]
uuids = [str(uuid4()) for _ in range(len(documents))]
vector_store.add_documents(documents=documents, ids=uuids)
['f22ed484-6db3-4b76-adb1-18a777426cd6',
'e0d5bab4-6453-4511-9a37-023d9d288faa',
'877d76b8-3580-4d9e-a13f-eed0fa3d134a',
'26eaccab-81ce-4c0a-8e76-bf542647df18',
'bcaa8239-7986-4050-bf40-e14fb7dab997',
'cdc44b38-a83f-4e49-b249-7765b334e09d',
'a7a35354-2687-4bc2-8242-3849a4d18d34',
'8780caf1-d946-4f27-a707-67d037e9e1d8',
'dec6af2a-7326-408f-893d-7d7d717dfda9',
'3b18e210-bb59-47a0-8e17-c8e51176ea5e']
Update items in vector store
Now that we have added documents to our vector store, we can update existing documents by using the update_documents
function.
updated_document_1 = Document(
page_content="I had chocolate chip pancakes and fried eggs for breakfast this morning.",
metadata={"source": "tweet"},
id=1,
)
updated_document_2 = Document(
page_content="The weather forecast for tomorrow is sunny and warm, with a high of 82 degrees.",
metadata={"source": "news"},
id=2,
)
vector_store.update_document(document_id=uuids[0], document=updated_document_1)
# You can also update multiple documents at once
vector_store.update_documents(
ids=uuids[:2], documents=[updated_document_1, updated_document_2]
)
Delete items from vector store
We can also delete items from our vector store as follows:
vector_store.delete(ids=uuids[-1])
Query vector store
Once your vector store has been created and the relevant documents have been added you will most likely wish to query it during the running of your chain or agent.
Query directly
Similarity search
Performing a simple similarity search can be done as follows:
results = vector_store.similarity_search(
"LangChain provides abstractions to make working with LLMs easy",
k=2,
filter={"source": "tweet"},
)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")
* Building an exciting new project with LangChain - come check it out! [{'source': 'tweet'}]
* LangGraph is the best framework for building stateful, agentic applications! [{'source': 'tweet'}]
Similarity search with score
If you want to execute a similarity search and receive the corresponding scores you can run:
results = vector_store.similarity_search_with_score(
"Will it be hot tomorrow?", k=1, filter={"source": "news"}
)
for res, score in results:
print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]")
* [SIM=1.726390] The stock market is down 500 points today due to fears of a recession. [{'source': 'news'}]
Search by vector
You can also search by vector:
results = vector_store.similarity_search_by_vector(
embedding=embeddings.embed_query("I love green eggs and ham!"), k=1
)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
* I had chocalate chip pancakes and fried eggs for breakfast this morning. [{'source': 'tweet'}]
Other search methods
There are a variety of other search methods that are not covered in this notebook, such as MMR search or searching by vector. For a full list of the search abilities available for AstraDBVectorStore
check out the API reference.
Query by turning into retriever
You can also transform the vector store into a retriever for easier usage in your chains. For more information on the different search types and kwargs you can pass, please visit the API reference here.
retriever = vector_store.as_retriever(
search_type="mmr", search_kwargs={"k": 1, "fetch_k": 5}
)
retriever.invoke("Stealing from the bank is a crime", filter={"source": "news"})
[Document(metadata={'source': 'news'}, page_content='Robbers broke into the city bank and stole $1 million in cash.')]
Usage for retrieval-augmented generation
For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:
- Tutorials: working with external knowledge
- How-to: Question and answer with RAG
- Retrieval conceptual docs
API reference
For detailed documentation of all Chroma
vector store features and configurations head to the API reference: https://python.langchain.com/api_reference/chroma/vectorstores/langchain_chroma.vectorstores.Chroma.html
Related
- Vector store conceptual guide
- Vector store how-to guides